

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 ### Archived as of 24/04/2021.

Apple has again broken the URLs required for storefront switching. I’ve decided to archive DevSwitch due to this. If Apple ever allows these links again into the future, there are many other better choices to use such as Shortcuts to build a similar tool.

	<p align=”center”>
	

</p>

DevSwitch for iOS

DevSwitch is a developer utility that allows developers to switch their storefront to easily check their app’s rankings, features and more. With a list of every storefront available, DevSwitch is the ultimate storefront switching app. Bookmark your apps to easily change a store then check their localisations, reviews and features.

Key Features:
- Siri Shortcuts
- Quick Actions
- Favoriting Storefronts
- URL Schemes for inter-app integration
- App Bookmarking

Note: DevSwitch does not function on iOS 13.0, but will on older versions on iOS or 13.1 onwards at this stage.

Follow me on Twitter at [@aaron_pearce](https://twitter.com/aaron_pearce).

Getting involved

Please feel free to participate in this open source project. I’d love to see Pull Requests, Bug Reports, ideas and any other positive contributions from the community!

Building the code

	
	Clone the repository:
	`shell
git clone https://github.com/aaronpearce/DevSwitch.git
`

	
	Pull in the project dependencies:
	`shell
cd DevSwitch
sh ./bootstrap.sh
`

	Open DevSwitch.xcworkspace in Xcode.

	Build the DevSwitch scheme in Xcode.

Code Signing

If bootstrap.sh fails to correctly offer your Apple Team ID, please follow this guide to manually add it.

1. After running the bootstrap.sh script in the setup instructions navigate to:

`DevSwitch/Configuration/Local/DevTeam.xcconfig`
1. Add your Apple Team ID in this file:

`LOCAL_DEVELOPMENT_TEAM = KL8N8XSYF4`

>Team IDs look identical to provisioning profile UUIDs, so make sure this is the correct one.

The entire Local directory is included in the .gitignore, so these changes are not tracked by source control. This allows code signing without making tracked changes. Updating this file will only sign the DevSwitch target for local builds.

Finding Team IDs

The easiest known way to find your team ID is to log into your [Apple Developer](https://developer.apple.com) account. After logging in, the team ID is currently shown at the end of the URL:

`https://developer.apple.com/account/<TEAM ID>`

Use this string literal in the above, DevTeam.xcconfig file to code sign

Thanks

Thanks to everyone for their support in development and throughout the initial review process that failed and a particular thanks to [@kylehickinson](https://github.com/kylehickinson) for the suggestion to use Brave’s .xcconfig based setup for local development signing. Credit to [@jhreis](https://github.com/jhreis) for the initial implementation that I based this upon.

Flag icons were created by [Freepik](https://www.flaticon.com/authors/freepik) and are available [here](https://www.flaticon.com/packs/countrys-flags).

Open Source & Copying

DevSwitch is licensed under MIT so that you can use any code in your own apps, if you choose.

However, please do not ship this app under your own account. Paid or free. Not that Apple will accept it.

 —
name: Bug report
about: Create a report to help us improve
title: ‘’
labels: ‘’
assignees: ‘’

—

Describe the bug
A clear and concise description of what the bug is.

To Reproduce
Steps to reproduce the behavior:
1. Go to ‘…’
2. Click on ‘….’
3. Scroll down to ‘….’
4. See error

Expected behavior
A clear and concise description of what you expected to happen.

Screenshots
If applicable, add screenshots to help explain your problem.

	Desktop (please complete the following information):
	
	OS: [e.g. iOS]

	Browser [e.g. chrome, safari]

	Version [e.g. 22]

	Smartphone (please complete the following information):
	
	Device: [e.g. iPhone6]

	OS: [e.g. iOS8.1]

	Browser [e.g. stock browser, safari]

	Version [e.g. 22]

Additional context
Add any other context about the problem here.

 —
name: Feature request
about: Suggest an idea for this project
title: ‘’
labels: ‘’
assignees: ‘’

—

Is your feature request related to a problem? Please describe.
A clear and concise description of what the problem is. Ex. I’m always frustrated when […]

Describe the solution you’d like
A clear and concise description of what you want to happen.

Describe alternatives you’ve considered
A clear and concise description of any alternative solutions or features you’ve considered.

Additional context
Add any other context or screenshots about the feature request here.

 <p align=”center”>

</p>

<p align=”center”>

</p>

Kingfisher is a powerful, pure-Swift library for downloading and caching images from the web. It provides you a chance to use a pure-Swift way to work with remote images in your next app.

Features

	[x] Asynchronous image downloading and caching.

	[x] Loading image from either URLSession-based networking or local provided data.

	[x] Useful image processors and filters provided.

	[x] Multiple-layer hybrid cache for both memory and disk.

	[x] Fine control on cache behavior. Customizable expiration date and size limit.

	[x] Cancelable downloading and auto-reusing previous downloaded content to improve performance.

	[x] Independent components. Use the downloader, caching system and image processors separately as you need.

	[x] Prefetching images and showing them from cache to boost your app.

	[x] View extensions for UIImageView, NSImageView, NSButton and UIButton to directly set an image from a URL.

	[x] Built-in transition animation when setting images.

	[x] Customizable placeholder and indicator while loading images.

	[x] Extensible image processing and image format easily.

Kingfisher 101

The simplest use-case is setting an image to an image view with the UIImageView extension:

`swift
let url = URL(string: "https://example.com/image.png")
imageView.kf.setImage(with: url)
`

Kingfisher will download the image from url, send it to both memory cache and disk cache, and display it in imageView. When you set with the same URL later, the image will be retrieved from cache and shown immediately.

A More Advanced Example

With the powerful options, you can do hard tasks with Kingfisher in a simple way. For example, the code below:

	Downloads a high-resolution image.

	Downsamples it to match the image view size.

	Makes it round cornered with a given radius.

	Shows a system indicator and a placeholder image while downloading.

	When prepared, it animates the small thumbnail image with a “fade in” effect.

	The original large image is also cached to disk for later use, to get rid of downloading it again in a detail view.

	A console log is printed when the task finishes, either for success or failure.


```swift
let url = URL(string: “https://example.com/high_resolution_image.png”)
let processor = DownsamplingImageProcessor(size: imageView.size)


>> RoundCornerImageProcessor(cornerRadius: 20)




imageView.kf.indicatorType = .activity
imageView.kf.setImage(


with: url,
placeholder: UIImage(named: “placeholderImage”),
options: [


.processor(processor),
.scaleFactor(UIScreen.main.scale),
.transition(.fade(1)),
.cacheOriginalImage




])





	{
	result in
switch result {
case .success(let value):


print(“Task done for: (value.source.url?.absoluteString ?? “”)”)





	case .failure(let error):
	print(“Job failed: (error.localizedDescription)”)





}






}

It is really a very common situation I can meet in my daily work. Think about how many lines you need to write without Kingfisher. You will fall in love with it if you give it a try!

### Learn More

To learn the using of Kingfisher by more examples, take a look at the [Cheat Sheet](https://github.com/onevcat/Kingfisher/wiki/Cheat-Sheet). There we summarized most common tasks in Kingfisher, you can get a better idea on what this framework can do. There are also some tips for performance in the same page, remember to check them too.

## Requirements


	iOS 10.0+ / macOS 10.12+ / tvOS 10.0+ / watchOS 3.0+


	Swift 4.0+




[Kingfisher 5.0 Migration](https://github.com/onevcat/Kingfisher/wiki/Kingfisher-5.0-Migration-Guide) - Kingfisher 5.x is NOT fully compatible with version 4.x. However, the migration is not difficult. Depending on your use cases, it may take no effect or several minutes to modify your existing code for the new version. Please follow the [migration guide](https://github.com/onevcat/Kingfisher/wiki/Kingfisher-5.0-Migration-Guide) when you prepare to upgrade Kingfisher in your project.

If you are using an even earlier version, see the guides below to know the steps for migrating.

> - Kingfisher 4.0 Migration - Kingfisher 3.x should be source compatible to Kingfisher 4. The reason for a major update is that we need to specify the Swift version explicitly for Xcode. All deprecated methods in Kingfisher 3 has been removed, so please ensure you have no warning left before you migrate from Kingfisher 3 to Kingfisher 4. If you have any trouble in migrating, please open an issue to discuss.
> - [Kingfisher 3.0 Migration](https://github.com/onevcat/Kingfisher/wiki/Kingfisher-3.0-Migration-Guide) - If you are upgrading to Kingfisher 3.x from an earlier version, please read this for more information.

## Next Steps

We prepared a [wiki page](https://github.com/onevcat/Kingfisher/wiki). You can find tons of useful things there.


	[Installation Guide](https://github.com/onevcat/Kingfisher/wiki/Installation-Guide) - Follow it to integrate Kingfisher into your project.


	[Cheat Sheet](https://github.com/onevcat/Kingfisher/wiki/Cheat-Sheet)- Curious about what Kingfisher could do and how would it look like when used in your project? See this page for useful code snippets. If you are already familiar with Kingfisher, you could also learn new tricks to improve the way you use Kingfisher!


	[API Reference](http://onevcat.github.io/Kingfisher/) - Lastly, please remember to read the full whenever you may need a more detailed reference.




## Other

### Future of Kingfisher

I want to keep Kingfisher lightweight. This framework will focus on providing a simple solution for downloading and caching images. This doesn’t mean the framework can’t be improved. Kingfisher is far from perfect, so necessary and useful updates will be made to make it better.

### Developments and Tests

Any contributing and pull requests are warmly welcome. However, before you plan to implement some features or try to fix an uncertain issue, it is recommended to open a discussion first. It would be appreciated if your pull requests could build and with all tests green. :)

### About the logo

The logo of Kingfisher is inspired by [Tangram (七巧板)](http://en.wikipedia.org/wiki/Tangram), a dissection puzzle consisting of seven flat shapes from China. I believe she’s a kingfisher bird instead of a swift, but someone insists that she is a pigeon. I guess I should give her a name. Hi, guys, do you have any suggestions?

### Contact

Follow and contact me on [Twitter](http://twitter.com/onevcat) or [Sina Weibo](http://weibo.com/onevcat). If you find an issue, just [open a ticket](https://github.com/onevcat/Kingfisher/issues/new). Pull requests are warmly welcome as well.

## Contributors

This project exists thanks to all the people who contribute. [[Contribute]](https://github.com/onevcat/Kingfisher/blob/master/CONTRIBUTING.md).
<a href=”https://opencollective.com/kingfisher#backer”><img src=”https://opencollective.com/kingfisher/contributors.svg?width=890” /></a>

## Backers

Thank you to all our backers! Your support is really important for the project and encourages us to continue. 🙏 [[Become a backer](https://opencollective.com/kingfisher#backer)]

<a href=”https://opencollective.com/kingfisher#backers” target=”_blank”><img src=”https://opencollective.com/kingfisher/backers.svg?width=890”></a>

## Sponsors

Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [[Become a sponsor](https://opencollective.com/kingfisher#sponsor)]

<a href=”https://opencollective.com/kingfisher/sponsor/0/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/0/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/1/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/1/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/2/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/2/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/3/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/3/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/4/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/4/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/5/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/5/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/6/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/6/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/7/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/7/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/8/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/8/avatar.svg”></a>
<a href=”https://opencollective.com/kingfisher/sponsor/9/website” target=”_blank”><img src=”https://opencollective.com/kingfisher/sponsor/9/avatar.svg”></a>

### License

Kingfisher is released under the MIT license. See LICENSE for details.




            

          

      

      

    

  

    
      
          
            
  ![Realm](https://github.com/realm/realm-cocoa/raw/master/logo.png)

Realm is a mobile database that runs directly inside phones, tablets or wearables.
This repository holds the source code for the iOS, macOS, tvOS & watchOS versions of Realm Swift & Realm Objective-C.

## Features


	Mobile-first: Realm is the first database built from the ground up to run directly inside phones, tablets and wearables.


	Simple: Data is directly [exposed as objects](https://realm.io/docs/objc/latest/#models) and [queryable by code](https://realm.io/docs/objc/latest/#queries), removing the need for ORM’s riddled with performance & maintenance issues. Most of our users pick it up intuitively, getting simple apps up & running in minutes.


	Modern: Realm supports relationships, generics, vectorization and Swift.


	Fast: Realm is faster than even raw SQLite on common operations, while maintaining an extremely rich feature set.




## Getting Started

Please see the detailed instructions in our docs to add [Realm Objective-C](https://realm.io/docs/objc/latest/#installation) _or_ [Realm Swift](https://realm.io/docs/swift/latest/#installation) to your Xcode project.

## Documentation

### Realm Objective-C

The documentation can be found at [realm.io/docs/objc/latest](https://realm.io/docs/objc/latest).
The API reference is located at [realm.io/docs/objc/latest/api/](https://realm.io/docs/objc/latest/api/).

### Realm Swift

The documentation can be found at [realm.io/docs/swift/latest](https://realm.io/docs/swift/latest).
The API reference is located at [realm.io/docs/swift/latest/api/](https://realm.io/docs/swift/latest/api/).

## Getting Help


	Need help with your code?: Look for previous questions on the  [#realm tag](https://stackoverflow.com/questions/tagged/realm?sort=newest) — or [ask a new question](https://stackoverflow.com/questions/ask?tags=realm). We actively monitor & answer questions on SO!


	Have a bug to report? [Open an issue](https://github.com/realm/realm-cocoa/issues/new). If possible, include the version of Realm, a full log, the Realm file, and a project that shows the issue.


	Have a feature request? [Open an issue](https://github.com/realm/realm-cocoa/issues/new). Tell us what the feature should do, and why you want the feature.


	Sign up for our [Community Newsletter](https://realm.io/realm-news-subscribe) to get regular tips, learn about other use-cases and get alerted of blogposts and tutorials about Realm.




## Building Realm

In case you don’t want to use the precompiled version, you can build Realm yourself from source.

Prerequisites:


	Building Realm requires Xcode 8.x.


	If cloning from git, submodules are required: git submodule update –init –recursive.


	Building Realm documentation requires [jazzy](https://github.com/realm/jazzy)




Once you have all the necessary prerequisites, building Realm.framework just takes a single command: sh build.sh build. You’ll need an internet connection the first time you build Realm to download the core binary.

Run sh build.sh help to see all the actions you can perform (build ios/osx, generate docs, test, etc.).

## Contributing

See [CONTRIBUTING.md](CONTRIBUTING.md) for more details!

This project adheres to the [Contributor Covenant Code of Conduct](https://realm.io/conduct).
By participating, you are expected to uphold this code. Please report
unacceptable behavior to [info@realm.io](mailto:info@realm.io).

## License

Realm Objective-C & Realm Swift are published under the Apache 2.0 license.
Realm Core is also published under the Apache 2.0 license and is available
[here](https://github.com/realm/realm-core).

This product is not being made available to any person located in Cuba, Iran,
North Korea, Sudan, Syria or the Crimea region, or to any other person that is
not eligible to receive the product under U.S. law.

## Feedback

_If you use Realm and are happy with it, all we ask is that you please consider sending out a tweet mentioning [@realm](https://twitter.com/realm) to share your thoughts!_

_And if you don’t like it, please let us know what you would like improved, so we can fix it!_

![analytics](https://ga-beacon.appspot.com/UA-50247013-2/realm-cocoa/README?pixel)



            

          

      

      

    

  

    
      
          
            
  ![Realm](https://github.com/realm/realm-cocoa/raw/master/logo.png)

Realm is a mobile database that runs directly inside phones, tablets or wearables.
This repository holds the source code for the iOS, macOS, tvOS & watchOS versions of Realm Swift & Realm Objective-C.

## Features


	Mobile-first: Realm is the first database built from the ground up to run directly inside phones, tablets and wearables.


	Simple: Data is directly [exposed as objects](https://realm.io/docs/objc/latest/#models) and [queryable by code](https://realm.io/docs/objc/latest/#queries), removing the need for ORM’s riddled with performance & maintenance issues. Most of our users pick it up intuitively, getting simple apps up & running in minutes.


	Modern: Realm supports relationships, generics, vectorization and Swift.


	Fast: Realm is faster than even raw SQLite on common operations, while maintaining an extremely rich feature set.




## Getting Started

Please see the detailed instructions in our docs to add [Realm Objective-C](https://realm.io/docs/objc/latest/#installation) _or_ [Realm Swift](https://realm.io/docs/swift/latest/#installation) to your Xcode project.

## Documentation

### Realm Objective-C

The documentation can be found at [realm.io/docs/objc/latest](https://realm.io/docs/objc/latest).
The API reference is located at [realm.io/docs/objc/latest/api/](https://realm.io/docs/objc/latest/api/).

### Realm Swift

The documentation can be found at [realm.io/docs/swift/latest](https://realm.io/docs/swift/latest).
The API reference is located at [realm.io/docs/swift/latest/api/](https://realm.io/docs/swift/latest/api/).

## Getting Help


	Need help with your code?: Look for previous questions on the  [#realm tag](https://stackoverflow.com/questions/tagged/realm?sort=newest) — or [ask a new question](https://stackoverflow.com/questions/ask?tags=realm). We actively monitor & answer questions on SO!


	Have a bug to report? [Open an issue](https://github.com/realm/realm-cocoa/issues/new). If possible, include the version of Realm, a full log, the Realm file, and a project that shows the issue.


	Have a feature request? [Open an issue](https://github.com/realm/realm-cocoa/issues/new). Tell us what the feature should do, and why you want the feature.


	Sign up for our [Community Newsletter](https://realm.io/realm-news-subscribe) to get regular tips, learn about other use-cases and get alerted of blogposts and tutorials about Realm.




## Building Realm

In case you don’t want to use the precompiled version, you can build Realm yourself from source.

Prerequisites:


	Building Realm requires Xcode 8.x.


	If cloning from git, submodules are required: git submodule update –init –recursive.


	Building Realm documentation requires [jazzy](https://github.com/realm/jazzy)




Once you have all the necessary prerequisites, building Realm.framework just takes a single command: sh build.sh build. You’ll need an internet connection the first time you build Realm to download the core binary.

Run sh build.sh help to see all the actions you can perform (build ios/osx, generate docs, test, etc.).

## Contributing

See [CONTRIBUTING.md](CONTRIBUTING.md) for more details!

This project adheres to the [Contributor Covenant Code of Conduct](https://realm.io/conduct).
By participating, you are expected to uphold this code. Please report
unacceptable behavior to [info@realm.io](mailto:info@realm.io).

## License

Realm Objective-C & Realm Swift are published under the Apache 2.0 license.
Realm Core is also published under the Apache 2.0 license and is available
[here](https://github.com/realm/realm-core).

This product is not being made available to any person located in Cuba, Iran,
North Korea, Sudan, Syria or the Crimea region, or to any other person that is
not eligible to receive the product under U.S. law.

## Feedback

_If you use Realm and are happy with it, all we ask is that you please consider sending out a tweet mentioning [@realm](https://twitter.com/realm) to share your thoughts!_

_And if you don’t like it, please let us know what you would like improved, so we can fix it!_

![analytics](https://ga-beacon.appspot.com/UA-50247013-2/realm-cocoa/README?pixel)



            

          

      

      

    

  

    
      
          
            
  # Reusable


	<p align=”center”>
	<img alt=”Reusable” src=”Logo.png” width=”150” height=”150”/>





</p>

A Swift mixin to use UITableViewCells, UICollectionViewCells and UIViewControllers in a type-safe way, without the need to manipulate their String-typed reuseIdentifiers. This library also supports arbitrary UIView to be loaded via a XIB using a simple call to loadFromNib()

[![CircleCI](https://circleci.com/gh/AliSoftware/Reusable/tree/master.svg?style=svg)](https://circleci.com/gh/AliSoftware/Reusable/tree/master)
[![Platform](http://cocoapod-badges.herokuapp.com/p/Reusable/badge.png)](http://cocoadocs.org/docsets/Reusable)
[![Version](http://cocoapod-badges.herokuapp.com/v/Reusable/badge.png)](http://cocoadocs.org/docsets/Reusable)
[![Language: Swift 3 & 4](https://img.shields.io/badge/Swift-3%20%26%204-orange.svg)](https://swift.org)

# Requirements


Swift Version |  Reusable Version  |



|----------------|——————–|
|    2.2 & 2.3   |        2.5.1       |
|       3.0 (†)  |        3.0.0 +     |
|       4.0      |        4.0.2 +     |

_(†) The Reusable 3.0 code also compiles with Swift 4, you’ll need 4.0.2+ only if you’re using Carthage for integration_

# Introduction

This library aims to make it super-easy to create, dequeue and instantiate reusable views anywhere this pattern is used: from the obvious UITableViewCell and UICollectionViewCell to custom UIViews, even supporting UIViewControllers from Storyboards.
All of that simply by marking your classes as conforming to a protocol, without having to add any code, and creating a type-safe API with no more String-based API.

`swift
// Example of what Reusable allows you to do
final class MyCustomCell: UITableViewCell, Reusable { /* And that's it! */ }
tableView.register(cellType: MyCustomCell.self)
let cell: MyCustomCell = tableView.dequeueReusableCell(for: indexPath)
`

This concept, called a [Mixin](http://alisoftware.github.io/swift/protocol/2015/11/08/mixins-over-inheritance/) (a protocol with default implementation for all its methods), is explained [here in my blog post](http://alisoftware.github.io/swift/generics/2016/01/06/generic-tableviewcells/) in details.

Table of Contents


	[Type-safe cells](#type-safe-uitableviewcell–uicollectionviewcell)


	[Type-safe XIB-based reusable views](#type-safe-xib-based-reusable-views)


	[Type-safe ViewControllers from Storyboards](#type-safe-viewcontrollers-from-storyboards)


	[Additional tips](#additional-tips)


	[Example project](#example-project)


	[Talks and Articles about Reusable](#talks-and-articles-about-reusable)


	[License](#license)




—

# Type-safe UITableViewCell / UICollectionViewCell

> ✍️ Examples and explanations below use UITableView and UITableViewCell, but the exact same examples and explanations apply for UICollectionView and UICollectionViewCell.

## 1. Declare your cells to conform to Reusable or NibReusable


	Use the Reusable protocol if they don’t depend on a NIB (this will use registerClass(…) to register the cell)


	Use the NibReusable typealias (= Reusable & NibLoadable) if they use a XIB file for their content (this will use registerNib(…) to register the cell)




`swift
final class CustomCell: UITableViewCell, Reusable { /* And that's it! */ }
`

> ✍️ Notes
>
> * For cells embedded in a Storyboard’s tableView, either one of those two protocols will work (as you won’t register the cell them manually anyway)
> * If you create a XIB-based cell, don’t forget to set its _Reuse Identifier_ field in Interface Builder to the same string as the name of the cell class itself.
> * 💡 NibReusable is a typealias, so you could still use two protocols conformance Reusable, NibLoadable instead of NibReusable.

<details>
<summary>📑 Example for a Code-based custom tableView cell</summary>

```swift
final class CodeBasedCustomCell: UITableViewCell, Reusable {

// By default this cell will have a reuseIdentifier of “CodeBasedCustomCell”
// unless you provide an alternative implementation of var reuseIdentifier

// No need to add anything to conform to Reusable. You can just keep your normal cell code
@IBOutlet private weak var label: UILabel!
func fillWithText(text: String?) { label.text = text }

}

</details>

<details>
<summary>📑 Example for a Nib-based custom tableView cell</summary>

```swift
final class NibBasedCustomCell: UITableViewCell, NibReusable {
// or
// final class NibBasedCustomCell: UITableViewCell, Reusable, NibLoadable {


// Here we provide a nib for this cell class (which, if we don’t override the protocol’s
// default implementation of nib, will use a XIB of the same name as the class)

// No need to add anything to conform to Reusable. You can just keep your normal cell code
@IBOutlet private weak var pictureView: UIImageView!
func fillWithImage(image: UIImage?) { pictureView.image = image }






}

</details>

<details>
<summary>📑 Example for a Code-based custom collectionView cell</summary>

```swift
// A UICollectionViewCell which doesn’t need a XIB to register
// Either because it’s all-code, or because it’s registered via Storyboard
final class CodeBasedCollectionViewCell: UICollectionViewCell, Reusable {

// The rest of the cell code goes here

}

</details>

<details>
<summary>📑 Example for a Nib-based custom collectionView cell</summary>

```swift
// A UICollectionViewCell using a XIB to define it’s UI
// And that will need to register using that XIB
final class NibBasedCollectionViewCell: UICollectionViewCell, NibReusable {
// or
// final class NibBasedCollectionViewCell: UICollectionViewCell, Reusable, NibLoadable {


// The rest of the cell code goes here






}

</details>

## 2. Register your cells

Unless you’ve prototyped your cell in a Storyboard, you’ll have to register the cell class or Nib by code.

To do this, instead of calling registerClass(…) or registerNib(…) using a String-based reuseIdentifier, just call:

`swift
tableView.register(cellType: theCellClass.self)
`

<details>
<summary>📑 Example of UITableView registration</summary>

```swift
class MyViewController: UIViewController {

@IBOutlet private weak var tableView: UITableView!

	override func viewDidLoad() {
	super.viewDidLoad()
tableView.register(cellType: CodeBasedCustomCell.self) // This will register using the class without using a UINib
tableView.register(cellType: NibBasedCustomCell.self) // This will register using NibBasedCustomCell.xib

}

}

</details>

3. Dequeue your cells

To dequeue a cell (typically in your cellForRowAtIndexPath implementation), simply call dequeueReusableCell(indexPath:):

`swift
// Either
let cell = tableView.dequeueReusableCell(for: indexPath) as MyCustomCell
// Or
let cell: MyCustomCell = tableView.dequeueReusableCell(for: indexPath)
`

As long as Swift can use type-inference to understand that you’ll want a cell of type `MyCustomCell` (either using as MyCystomCell or explicitly typing the receiving variable cell: MyCustomCell), it will magically infer both the cell class to use and thus its reuseIdentifier needed to dequeue the cell, and which exact type to return to save you a type-cast.

	No need for you to manipulate reuseIdentifiers Strings manually anymore!

	No need to force-cast the returned UITableViewCell instance down to your MyCustomCell class either!

<details>
<summary>📑 Example implementation of cellForRowAtIndexPath using `Reusable`</summary>

```swift
extension MyViewController: UITableViewDataSource {



	func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
	
	if indexPath.section == 0 {
	let cell = tableView.dequeueReusableCell(indexPath: indexPath) as CodeBasedCustomCell
// Customize the cell here. You can call any type-specific methods here without the need for type-casting
cell.fillWithText(“Foo”)
return cell



	} else {
	let cell = tableView.dequeueReusableCell(indexPath: indexPath) as NibBasedCustomCell
// Customize the cell here. no need to downcasting here either!
cell.fillWithImage(UIImage(named:”Bar”))
return cell





}





}






}

</details>

Now all you have is a beautiful code and type-safe cells, with compile-type checking, and no more String-based API!

> 💡 If the cell class is computed at runtime in a variable, you won’t be able to use as theVariable or let cell: theVariable obviously… but instead you can use the optional parameter cellType (which otherwise gets infered by the return type and is thus not necessary to provide explicitly)
>
> <details>
> <summary>📑 Example with a cell type determined at runtime</summary>
>
> `swift
> class ParentCell: UITableViewCell, Reusable {}
> class Child1Cell: ParentCell {}
> class Child2Cell: ParentCell {}
>
> func cellType(for indexPath: NSIndexPath) -> ParentCell.Type {
>   return (indexPath.row % 2 == 0) ? Child1Cell.self : Child2Cell.self
> }
>
> func tableView(tableView: UITableView, cellForRowAtIndexPath indexPath: NSIndexPath) -> UITableViewCell {
>   let cellClass = self.cellType(for: indexPath)
>   // As `self.cellType(for:)` always returns a `ParentCell` (sub-)class, the type
>   // of the variable `cell` below is infered to be `ParentCell` too. So only methods
>   // declared in the parent `ParentCell` class will be accessible on the `cell` variable.
>   let cell = tableView.dequeueReusableCell(for: indexPath, cellType: cellClass)
>   return cell
> }
> `
> </details>

—

# Type-safe XIB-based reusable views

Reusable also allows you to create reusable custom views designed in Interface Builder to reuse them in other XIBs or by code, like creating custom UI widgets used in multiple places in your app.

## 1. Declare your views to conform to NibLoadable or NibOwnerLoadable

In your swift source declaring your custom view class:


	Use the NibLoadable protocol if the XIB you’re using don’t use its “File’s Owner” and the reusable view you’re designing is the root view of the XIB


	Use the NibOwnerLoadable protocol if you used a “File’s Owner” of the XIB being of the class of your reusable view, and the root view(s) of the XIB is to be set as a subview providing its content.




```swift
// a XIB-based custom UIView, used as root of the XIB
final class NibBasedRootView: UIView, NibLoadable { /* and that’s it! */ }

// a XIB-based custom UIView, used as the XIB’s “File’s Owner”
final class NibBasedFileOwnerView: UIView, NibOwnerLoadable { /* and that’s it! */ }
```

> 💡 You should use the second approach if you plan to use your custom view in another XIB or Storyboard.
> This will allow you to just drop a UIView in a XIB/Storyboard and change its class to the class of your custom XIB-based view to use it. That custom view will then automagically load its own content from the associated XIB when instantiated by the storyboard containing it, without having to write additional code to load the content of the custom view manually every time.

## 2. Design your view in Interface Builder

For example if you named your class MyCustomWidget and made it NibOwnerLoadable:


	Set the _File’s Owner_’s class to MyCustomWidget


	Design the content of the view via the root view of that XIB (which is a standard UIView with no custom class) and its subviews


	Connect any @IBOutlets and @IBActions between the _File’s Owner_ (the MyCustomWidget) and its content




<details>
<summary>🖼📑 A view configured to be `NibOwnerLoadable`</summary>

![NibOwnerLoadable view in Interface Builder](NibOwnerLoadable.png)

```swift
final class MyCustomWidget: UIView, NibOwnerLoadable {

@IBOutlet private var rectView: UIView!
@IBOutlet private var textLabel: UILabel!

	@IBInspectable var rectColor: UIColor? {
	
	didSet {
	self.rectView.backgroundColor = self.rectColor

}

}
@IBInspectable var text: String? {

	didSet {
	self.textLabel.text = self.text

}

}

…

```
</details>

Then that widget can be integrated in a Storyboard Scene (or any other XIB) by simply dropping a UIView on the Storyboard, and changing its class to MyCustomWidget.

<details>
<summary>🖼 Example of a NibOwnerLoadable custom view once integrated in another Storyboard</summary>


	In the capture below, all blue square views have a custom class of MyCustomWidget set in Interface Builder.


	When selecting one of this custom class, you have direct access to all @IBOutlet that this MyCustomWidget exposes, which allows you to connect them to other views of the Storyboard if needed


	When selecting one of this custom class, you also have access to all the @IBInspectable properties. For example, in the capture below, you can see the “Rect color” and “Text” inspectable properties on the right panel, that you can change right from the Storyboard integrating your custom widget.




![NibOwnerLoadable integrated in a Storyboard](NibOwnerLoadable-InStoryboard.png)
</details>

## 3a. Auto-loading the content of a NibOwnerLoadable view

If you used NibOwnerLoadable and made your custom view the File’s Owner of your XIB, you should then override init?(coder:) so that it load it’s associated XIB as subviews and add constraints automatically:

```swift
final class MyCustomWidget: UIView, NibOwnerLoadable {

…
required init?(coder aDecoder: NSCoder) {

super.init(coder: aDecoder)
self.loadNibContent()

}

}

Overriding init?(coder:) allows your MyCustomWidget custom view to load its content from the associated XIB MyCustomWidget.xib and add it as subviews of itself.

💡 Note: it is also possible to override init(frame:), in order to be able to create an instance of that view programatically and call loadNibContent() to fill with views if needed.

3b. Instantiating a NibLoadable view

If you used NibLoadable and made your custom view the root view of your XIB (not using the File’s Owner at all), these are not designed to be used in other Storyboards or XIBs like NibOwnerLoadable is, as they won’t be able to auto-load their content.

Instead, you will instantiate those NibLoadable views by code, which is as simple as calling loadFromNib() on your custom class:

`swift
let view1 = NibBasedRootView.loadFromNib() // Create one instance
let view2 = NibBasedRootView.loadFromNib() // Create another one
let view3 = NibBasedRootView.loadFromNib() // and another one
…
`

—

Type-safe ViewControllers from Storyboards

Reusable also allows you to mark your UIViewController classes as StoryboardBased or StoryboardSceneBased to easily instantiate them from their associated Storyboard in a type-safe way.

1. Declare your UIViewController to conform to StoryboardBased or StoryboardSceneBased

In your swift source declaring your custom UIViewController class:

	Use the StoryboardBased protocol if the *.storyboard file has the same name as the ViewController’s class, and its scene is the “initial scene” of the storyboard.
* This is typically ideal if you use one Storyboard per ViewController, for example.

	Use the StoryboardSceneBased protocol if scene in your storyboard has the same sceneIdentifier as the name of the ViewController’s class, but the *.storyboard file name doesn’t necessary match the ViewController’s class name.
* This is typically ideal for secondary scenes in bigger storyboards
* You’ll then be required to implement the sceneStoryboard type property to indicate the storyboard it belongs to.

<details>
<summary>📑 Example of a ViewController being the initial ViewController of its Storyboard</summary>

In this example, CustomVC is designed as the initial ViewController of a Storyboard named CustomVC.storyboard:

`swift
final class CustomVC: UIViewController, StoryboardBased { /* and that's it! */ }
`
</details>

<details>
<summary>📑 Example of a ViewController being an arbitrary scene in a differently-named Storyboard</summary>

In this example, SecondaryVC is designed in a Storyboard name CustomVC.storyboard (so with a different name than the class itself) and is _not_ the initial ViewController, but instead has its “Scene Identifier” set to the value “SecondaryVC” (same as the class name)

Conforming to StoryboardSceneBased will still require you to implement static var sceneStoryboard: UIStoryboard { get } to indicate the Storyboard where this scene is designed. You can typically implement that property using a let type constant:

```swift
final class SecondaryVC: UIViewController, StoryboardSceneBased {


static let sceneStoryboard = UIStoryboard(name: “CustomVC”, bundle: nil)
/* and that’s it! */






}

</details>

## 2. Instantiate your UIViewControllers

Simply call instantiate() on your custom class. This will automatically know which storyboard to load it from, and which scene (initial or not) to use to instantiate it.

```swift
func presentSecondary() {

let vc = SecondaryVC.instantiate() // Init from the “SecondaryVC” scene of CustomVC.storyboard
self.present(vc, animated: true) {}

}

—

Additional tips

Make your subclasses final

I advise you to mark your custom UITableViewCell, UICollectionViewCell, UIView and UIViewController subclasses as being final. This is because:

	In most cases, the custom cells and VCs you plan to instantiate are not intended to be subclassed themselves.

	More importantly, it helps the compiler a lot and gives you big optimizations

	It can be required in some cases when conforming to protocols that have Self requirements, like the ones used by this pod (Reusable, StoryboardBased, …).

In some cases you can avoid making your classes final, but in general it’s a good practice, and in the case of this pod, usually your custom UIViewController or whatever won’t be subclassed anyway:

	Either they are intended to be used and instantiated directly and never be subclassed, so final makes sense here

	In case your custom UIViewController, UITableViewCell, etc… is intended to be subclassed and be the parent class of many classes in your app, it makes more sense to add the protocol conformance (`StoryboardBased`, `Reusable`, …) to the child classes (and mark _them_ `final`) than adding the protocol on the parent, abstract class.

Customize reuseIdentifier, nib, etc for non-conventional uses

The protocols in this pod, like Reusable, NibLoadable, NibOwnerLoadable, StoryboardBased, NibReusable… are what is usually called [Mixins](http://alisoftware.github.io/swift/protocol/2015/11/08/mixins-over-inheritance/), which basically is a Swift protocol with a default implementation provided for all of its methods.

The main benefit is that you don’t need to add any code: just conform to Reusable, NibOwnerLoadable or any of those protocol and you’re ready to go with no additional code to write.

But of course, those provided implementations are just default implementations. That means that if you need you can still provide your own implementations in case for some reason some of your cells don’t follow the classic configuration of using the same name for both the class, the reuseIdentifier and the XIB file.

```swift
final class VeryCustomNibBasedCell: UITableViewCell, NibReusable {


// This cell use a non-standard configuration: its reuseIdentifier and XIB file
// have a different name as the class itself. So we need to provide a custom implementation or NibReusable
static var reuseIdentifier: String { return “VeryCustomReuseIdentifier” }
static var nib: UINib { return UINib(nibName: “VeryCustomUI”, bundle: nil) } // Use VeryCustomUI.xib

// Then continue with the rest of your normal cell code






}

The same is true for all the protocols of this pod, which always provide default implementations which could still be replaced by your own if you need some custom cases.

_But the beauty is in 90% of cases the default implementation will match typical conventions and the default implementations will be exactly what you want!_

## Type-safety and fatalError

Reusable allows you to manipulate type-safe APIs and make you avoid typos. But things could still go wrong in case of a misconfguration, for example if you forgot to set the reuseIdentifier of your cell in its XIB, or you declared a FooViewController to be StoryboardBased but forgot to set the initial ViewController flag on that FooViewController scene in that Storyboard, etc.

In such cases, because those are developer errors that should be caught as early as possible in the development process, Reusable will call fatalError with an error message as descriptive as possible (instead of crashing with an obscure message about some force-cast or force-unwrap or whatnot) to help you configure it right.

For example, if Reusable fails to dequeue a cell, it will bail with a message like:

> « Failed to dequeue a cell with identifier \(cellType.reuseIdentifier) matching type \(cellType.self).
> Check that the reuseIdentifier is set properly in your XIB/Storyboard and that you registered the cell beforehand. »

Hopefully, those explicit failure messages will allow you to understand what was misconfigured and help you fix it!

—

# Example Project

This repository comes with an example project in the Example/ folder. Feel free to try it.

It demonstrates how Reusable works for:


	UITableViewCell and UICollectionViewCell subclasses,


	Cells whose UI template is either only provided by plain code, or provided by a XIB, or prototyped directly in a Storyboard.


	UICollectionView’s SupplementaryViews (section Headers)


	Custom UIView designed in a XIB (NibOwnerLoadable)




# Talks and Articles about Reusable

The concepts behind Reusable has been presented in various articles and talks:


	[Using Generics to improve TableView cells](https://alisoftware.github.io/swift/generics/2016/01/06/generic-tableviewcells/) on my blog


	[FrenchKit’16 talk: Mixins over Inheritance](https://youtu.be/BSn4jlunn4I) (video)


	Same talk was also given at NSSpain’16 ([slides](https://speakerdeck.com/alisoftware/mixins-over-inheritance)) and AppDevCon’17 ([slides](https://speakerdeck.com/alisoftware/mixins-over-inheritance-appdevcon-17))




# License

This code is distributed under the MIT license. See the LICENSE file for more info.




            

          

      

      

    

  

    
      
          
            
  # SwipeCellKit

[![Build Status](https://travis-ci.org/jerkoch/SwipeCellKit.svg)](https://travis-ci.org/jerkoch/SwipeCellKit)
[![Version Status](https://img.shields.io/cocoapods/v/SwipeCellKit.svg)][podLink]
[![Swift 5.0](https://img.shields.io/badge/Swift-5.0-orange.svg?style=flat)](https://developer.apple.com/swift/)
[![license MIT](https://img.shields.io/cocoapods/l/SwipeCellKit.svg)][mitLink]
[![Platform](https://img.shields.io/cocoapods/p/SwipeCellKit.svg)][docsLink]
[![Carthage compatible](https://img.shields.io/badge/Carthage-compatible-4BC51D.svg?style=flat)](https://github.com/Carthage/Carthage)
[![Twitter](https://img.shields.io/badge/twitter-@mkurabi-blue.svg?style=flat)](https://twitter.com/mkurabi)

Swipeable UITableViewCell/UICollectionViewCell based on the stock Mail.app, implemented in Swift.

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Hero.gif” /></p>

## About

A swipeable UITableViewCell or UICollectionViewCell with support for:


	Left and right swipe actions


	Action buttons with: text only, text + image, image only


	Haptic Feedback


	Customizable transitions: Border, Drag, and Reveal


	Customizable action button behavior during swipe


	Animated expansion when dragging past threshold


	Customizable expansion animations


	Support for both UITableView and UICollectionView


	Accessibility




## Background

Check out my [blog post](https://jerkoch.com/2017/02/07/swiper-no-swiping.html) on how SwipeCellKit came to be.

## Demo

### Transition Styles

The transition style describes how the action buttons are exposed during the swipe.

#### Border

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Transition-Border.gif” /></p>

#### Drag

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Transition-Drag.gif” /></p>

#### Reveal

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Transition-Reveal.gif” /></p>

#### Customized

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Transition-Delegate.gif” /></p>

### Expansion Styles

The expansion style describes the behavior when the cell is swiped past a defined threshold.

#### None

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Expansion-None.gif” /></p>

#### Selection

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Expansion-Selection.gif” /></p>

#### Destructive

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Expansion-Destructive.gif” /></p>

#### Customized

<p align=”center”><img src=”https://raw.githubusercontent.com/jerkoch/SwipeCellKit/develop/Screenshots/Expansion-Delegate.gif” /></p>

## Requirements


	Swift 5.0


	Xcode 11.0+


	iOS 9.0+




## Installation

#### [CocoaPods](http://cocoapods.org) (recommended)

````ruby
use_frameworks!

Latest release in CocoaPods
pod ‘SwipeCellKit’

Get the latest on develop
pod ‘SwipeCellKit’, :git => ‘https://github.com/SwipeCellKit/SwipeCellKit.git’, :branch => ‘develop’

If you have NOT upgraded to Xcode 11, use the last Swift Xcode 10.X compatible release
pod ‘SwipeCellKit’, ‘2.6.0’

If you have NOT upgraded to Swift 5.0, use the last Swift 4.2/Xcode 10.2 compatible release
pod ‘SwipeCellKit’, ‘2.5.4’

If you have NOT upgraded to Swift 4.2, use the last non-swift 4.2 compatible release
pod ‘SwipeCellKit’, ‘2.4.3’
````

#### [Carthage](https://github.com/Carthage/Carthage)

``bash
github "SwipeCellKit/SwipeCellKit"
``

## Documentation

Read the [docs][docsLink]. Generated with [jazzy](https://github.com/realm/jazzy). Hosted by [GitHub Pages](https://pages.github.com).

## Usage for UITableView

Set the delegate property on SwipeTableViewCell:

````swift
override func tableView(_ tableView: UITableView, cellForRowAt indexPath: IndexPath) -> UITableViewCell {

let cell = tableView.dequeueReusableCell(withIdentifier: “Cell”) as! SwipeTableViewCell
cell.delegate = self
return cell

}

Adopt the SwipeTableViewCellDelegate protocol:

````swift
func tableView(_ tableView: UITableView, editActionsForRowAt indexPath: IndexPath, for orientation: SwipeActionsOrientation) -> [SwipeAction]? {


guard orientation == .right else { return nil }


	let deleteAction = SwipeAction(style: .destructive, title: “Delete”) { action, indexPath in
	// handle action by updating model with deletion





}

// customize the action appearance
deleteAction.image = UIImage(named: “delete”)

return [deleteAction]






}

Optionally, you can implement the editActionsOptionsForRowAt method to customize the behavior of the swipe actions:

````swift
func tableView(_ tableView: UITableView, editActionsOptionsForRowAt indexPath: IndexPath, for orientation: SwipeActionsOrientation) -> SwipeOptions {

var options = SwipeOptions()
options.expansionStyle = .destructive
options.transitionStyle = .border
return options

}

Usage for UICollectionView

Set the delegate property on SwipeCollectionViewCell:

````swift
override func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {


let cell = collectionView.dequeueReusableCell(withReuseIdentifier: “Cell”, for: indexPath) as! SwipeCollectionViewCell
cell.delegate = self
return cell






}

Adopt the SwipeCollectionViewCellDelegate protocol:

````swift
func collectionView(_ collectionView: UICollectionView, editActionsForItemAt indexPath: IndexPath, for orientation: SwipeActionsOrientation) -> [SwipeAction]? {

guard orientation == .right else { return nil }

	let deleteAction = SwipeAction(style: .destructive, title: “Delete”) { action, indexPath in
	// handle action by updating model with deletion

}

// customize the action appearance
deleteAction.image = UIImage(named: “delete”)

return [deleteAction]

}

Optionally, you can implement the editActionsOptionsForItemAt method to customize the behavior of the swipe actions:

````swift
func collectionView(_ collectionView: UICollectionView, editActionsOptionsForItemAt indexPath: IndexPath, for orientation: SwipeActionsOrientation) -> SwipeOptions {


var options = SwipeOptions()
options.expansionStyle = .destructive
options.transitionStyle = .border
return options






}

### Transitions

Three built-in transition styles are provided by SwipeTransitionStyle:


	.border: The visible action area is equally divide between all action buttons.


	.drag: The visible action area is dragged, pinned to the cell, with each action button fully sized as it is exposed.


	.reveal: The visible action area sits behind the cell, pinned to the edge of the table view, and is revealed as the cell is dragged aside.




See [Customizing Transitions](https://github.com/SwipeCellKit/SwipeCellKit/blob/develop/Guides/Advanced.md) for more details on customizing button appearance as the swipe is performed.

#### Transition Delegate

Transition for a SwipeAction can be observered by setting a SwipeActionTransitioning on the transitionDelegate property. This allows you to observe what percentage is visible and access to the underlying UIButton for that SwipeAction.

### Expansion

Four built-in expansion styles are provided by SwipeExpansionStyle:


	.selection


	.destructive (like Mail.app)


	.destructiveAfterFill (like Mailbox/Tweetbot)


	.fill




Much effort has gone into making SwipeExpansionStyle extremely customizable. If these built-in styles do not meet your needs, see [Customizing Expansion](https://github.com/SwipeCellKit/SwipeCellKit/blob/develop/Guides/Advanced.md) for more details on creating custom styles.

The built-in .fill expansion style requires manual action fulfillment. This means your action handler must call SwipeAction.fulfill(style:) at some point during or after invocation to resolve the fill expansion. The supplied ExpansionFulfillmentStyle allows you to delete or reset the cell at some later point (possibly after further user interaction).

The built-in .destructive, and .destructiveAfterFill expansion styles are configured to automatically perform row deletion when the action handler is invoked (automatic fulfillment).  Your deletion behavior may require coordination with other row animations (eg. inside beginUpdates and endUpdates). In this case, you can easily create a custom SwipeExpansionStyle which requires manual fulfillment to trigger deletion:

``swift
var options = SwipeTableOptions()
options.expansionStyle = .destructive(automaticallyDelete: false)
``

> NOTE: You must call SwipeAction.fulfill(with style:) at some point while/after your action handler is invoked to trigger deletion. Do not call deleteRows directly.

````swift
let delete = SwipeAction(style: .destructive, title: nil) { action, indexPath in

// Update model
self.emails.remove(at: indexPath.row)
action.fulfill(with: .delete)

}

Advanced

See the [Advanced Guide](https://github.com/SwipeCellKit/SwipeCellKit/blob/develop/Guides/Advanced.md) for more details on customization.

Credits

Maintained by [@mkurabi](https://twitter.com/mkurabi).

Showcase

We’re interested in knowing [who’s using SwipeCellKit](https://github.com/SwipeCellKit/SwipeCellKit/blob/develop/SHOWCASE.md) in their app. Please submit a pull request to add your app!

License

SwipeCellKit is released under an [MIT License][mitLink]. See LICENSE for details.

Please provide attribution, it is greatly appreciated.

[podLink]:https://cocoapods.org/pods/SwipeCellKit
[docsLink]:https://swipecellkit.github.io/SwipeCellKit/
[mitLink]:http://opensource.org/licenses/MIT

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

